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Abstract

A 4-4-1 artificial neural network was constructed and trained for the prediction of the electrophoretic mobilities of some aliphatic and aromatic
carboxylic acids based on quantitative structure–property relationships. The inputs of this network are theoretically derived descriptors that
were chosen by the stepwise variables selection techniques. These descriptors are: shape factor, molecular surface area, the maximum value of
electron density on atom in molecule, and the sum of atomic polarizability. In order to assess the accuracy and predictability of the proposed
model, the cross-validation test was employed. The results obtained showed the ability of developed artificial neural network to prediction of
electrophoretic mobilities of aliphatic and carboxylic acids. Also result reveals the superiority of the artificial neural network over the multiple
linear regression models.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Capillary electrophoresis (CE) provide high efficiency
separations of samples of very diverse nature (pharmaceuti-
cal, biological, environmental,. . . ) [1–4]. It has been consid-
erable advantage over chromatographic techniques in terms
of higher efficiency, reduced analysis time, smaller amounts
of sample required, and lower cost. The key parameter for
separation of analytes are their electrophoretic mobilities.
There are many factors that influence on the electrophoretic
mobilities of solutes[5–8]. According to Max Born’s model
two fundamental frictional factors are found to be important
in the electrophoretic mobilities of analytes; the hydrody-
namic friction factor (fh) and the dielectric friction factor
(fdl) [9–11]. These factors related to the electrophoretic mo-
bility (µ0) by the following equation:

µ0 = q

fh + fdl
(1)

whereq is the charge on the solute. The hydrodynamic fric-
tion factor associated with moving of the solute through a
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continuum solvent of finite viscosity and relate to molecu-
lar volume and/or mass of solute. The dielectric friction is
caused by the orientation of the solvent dipoles in response
to ionic charge. After ion passes, energy is dissipated during
the relaxation of the solvent to its equilibrium polarization.
This factor is related to the charge distribution within the
solute.

During method development in CE to develop an op-
timized separation the analytes generally have to employ
a large number of experiments, which is often costly and
time-consuming. Numerous empirical models have been de-
veloped for the calculation/prediction of electrophoretic mo-
bilities [12–14]. It has been established experimentally that
the electrophoretic mobility is proportional to the chargeq
and inversely proportional to the molecular massM to the
power−b:

µ0 = aqM−b (2)

where a and b are constants. Jokl[15] using paper elec-
trophoresis foundb = 0.5 whereas Offord[16] on basis of
an extensive study of peptides determinedb = 2/3.

Some reports have investigated the quantitative correla-
tion between the molecular parameters and the obtained re-
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sponses in CE. Fu and Lucy[17] developed non-linear ex-
pressions to correlate/predict the absolute mobilities of 34
monoamines using experimental data collected from con-
ductimetric measurements. They used molecular mass and
average hydration number as independent variables in their
equations. The average percentage error in the best model
produced by these authors for correlating the mobility of 34
aliphatic amines was 3.7%. Lucy and coworkers[18] also
developed an equation based on Max Born model for corre-
lating the mobility of some aliphatic carboxylic acid based
on their molar volume (V) and theirp-function of dissoci-
ation constant. This study investigated that the pKa value
can be used as a relative measure of the dielectric friction
and molecular volume demonstrate the effect of hydrody-
namic friction. The obtained percentage error in calculation
of electrophoretic mobilities of 15 aliphatic carboxylic acids
using this equation was 3.7%. Jouyban et al.[19] developed
an equation for calculating the electrophoretic mobility of
amines with respect to the concentration of organic modi-
fier in mixed-organic modifier running buffer which derived
from mixture response surface methodology. Also, Wronski
used charge and hidden mass of the solute in a non-linear
equation for the calculation/prediction of the electrophoretic
mobility of a diverse series of peptides and organic acids
[20].

Quantitative structure–property relationships (QSPRs)
have extensively been used to explain separation mecha-
nisms and predict retention behaviour in analytical chem-
istry [21–25]. Liang et al.[26] correlated the electrophoretic
mobility of flavonoids to topological indices but with
relatively high prediction error (10%). Jalali-Heravi and
Garkani-Nejad correlated the electrophoretic mobility of
some sulfonamides with their structural parameter using
QSPR techniques[27]. They have correlated the mobility
of analytes with the heat of formation, molecular surface
area,p-function of dissociation constant and partial charge
on the most positive atom in the molecule.

The main aim of the present work was to development
of a QSPR model using artificial neural networks (ANNs)
to prediction of electrophoretic mobilities of some mono
functional aliphatic and aromatic carboxylic acids and to
determine the underlying factors governing their mobilities.
In the first step, a multiple linear regression (MLR) model
was constructed. Then for inspection of non-linear interac-
tions/relation between different parameters in the model, an
artificial neural network was generated for the prediction of
the electrophoretic mobility of organic acids.

2. Methods

2.1. Data set

The electrophoretic mobilities of 58 anions of weak or-
ganic acids were taken from Ref.[20], that were be used as
data set. The compounds in the data set (Table 1) consist

of aliphatic and aromatic monofunctional carboxylic acids
with various groups, heteroatoms and structural isomers. The
electrophoretic mobilities of these compounds were obtained
in the same conditions. The mobilities of compounds in data
set fall in the range of 23.2–43.9 (10−4 cm2 s−1 V−1) for
p-tert-butylbenzoic acid and fluoroacetic acid, respectively.
The data set was randomly divided in two groups, a training
set and a prediction set consisting of 48 and 10 molecules,
respectively. The training set was used for the model gener-
ation and the prediction set was used for the evaluation of
the generated model.

2.2. Descriptors

The electrophoretic mobility of molecule related to molec-
ular structure in a complex way. The molecular structure and
chemical properties of the solute and solvent determine the
electrophoretic mobility of solute. Due to the diversity of
the molecules studied in this work different descriptors were
calculated. These descriptors encoded different aspects of
the molecular structure and consist of electronic, geometric,
and topological descriptors. Geometric descriptors were cal-
culated using optimized Cartesian coordinates and the van
der Waals radius of each atom in the molecule[28,29]. Elec-
tronic descriptors were calculated using the MOPAC pack-
age (version 6)[30] and topological descriptors were calcu-
lated using two-dimensional representation of the molecules.
Some of these molecular descriptors were calculated by
Dragon package[31] on the basis of the minimum energy
molecular geometries optimized by HYPERCHEM package
[32]. Dragon is a new, freely available software (by Milano
Chemometrics and QSAR Research Group) for the calcula-
tion of more than 800 molecular descriptors. The generated
numerical descriptors were responsible for encoding impor-
tant features of the structure of molecules.

2.3. Regression analysis

The main goal of the generation of the MLR model was
to choose a set of suitable descriptors that can be used as in-
puts for generation of the ANN model. Some of descriptors
generated for each compound encoded similar information
about the molecule of interest. Therefore, it was desirable
to test each descriptor and eliminate those that show high
correlation (R > 0.95) with each other. Subsequently, the
method of stepwise multiple linear regression was used for
the selection of important descriptors and MLR model con-
struction. The best MLR model is one that has high corre-
lation coefficient andF-value, low standard error and high
prediction power. The constructed MLR model is presented
in Table 2.

2.4. Artificial neural network construction

A detailed description of theory behind artificial neu-
ral networks have been adequately described elsewhere
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Table 1
Data set and corresponding observed and predicted values of the electrophoretic mobilities (10−4 cm2 s−1 V−1)

Number Name µEXP µANN µMLR Er (%)

Training set
1 Fluoroacetic acid 43.9 43.7 42 −0.45
2 3-Iodopropionic acid 34.9 34.3 35 −1.72
3 Benzoic acid 34.4 35.7 34.3 3.78
4 Gallic acid 34.4 33.9 31.9 −1.45
5 Phenoxyacetic acid 27.8 27.2 29.3 −2.16
6 o-Aminobenzoic acid 31.6 31.6 33 0
7 2-Hydroxybutyric acid 34.2 33.8 35.2 −1.17
8 Bromoacetic acid 38.8 38 39.4 −2.06
9 3,5-Dinitrobenzoic acid 29.1 30.1 29.6 3.44

10 p-Hydroxybenzoic acid 34 35 33.7 2.94
11 Vanillic acid 27.1 28.2 29.5 4.06
12 Chloroacetic acid 41.9 42 40.8 0.24
13 p-Fluorobenzoic acid 33.4 33.6 33.5 0.6
14 Pyruvic acid 40.4 40.4 37.7 0
15 2-Nitro-3-chlorobenzoic acid 31.3 30.3 29.1 −3.19
16 Trichloroacetic acid 36.2 36.5 36 0.83
17 Glycolic acid 42.3 43.1 41.6 1.89
18 p-Nitrobenzoic acid 32.1 32.7 32.1 1.87
19 Nicotinic acid 34.6 34.9 34.5 0.87
20 2-Nitro-3-bromobenzoic acid 28.2 28.5 28.3 1.06
21 Glucutonic acid 26.6 27.1 27.5 1.88
22 4-Bromobutyric acid 32.8 32.9 32.6 0.3
23 3,4-Dibromofluoroacetic acid 36.9 36.4 35.8 −1.36
24 o-Isopropylbenzoic acid 24.7 24.7 24.2 0
25 Trifluoroacetic acid 42.5 42.7 41.8 0.47
26 Cinnamic acid 28.3 28.5 29.5 0.71
27 p-Methoxybenzoic acid 28.3 29.2 30.6 3.18
28 2-Chlorobutyric acid 32.8 33.5 34.1 2.13
29 Gluconic acid 27.2 26.7 26.6 −1.84
30 p-Bromobenzoic acid 31.5 32.1 32 1.9
31 Iodoacetic acid 40.2 39.1 38.2 −2.74
32 Salicylic acid 35.4 35.2 33.8 −0.56
33 Lactic acid 36.5 36.1 38.2 −1.1
34 Dichloroacetic acid 39.4 38.5 37.9 −2.28
35 2,3-Dimethylbenzoic acid 27.1 27.7 28.5 2.21
36 p-Chlorobenzoic acid 33.4 33.8 32.9 1.2
37 5-Bromovaleric acid 30.8 31.6 31.7 2.6
38 Trichloroacetic acid 34.2 34.8 35.1 1.75
39 p-tert-Butylbenzoic acid 23.2 23.9 21.7 3.02
40 5-Iodovaleric acid 30.8 30.1 29.6 −2.27
41 2-Bromobutyric acid 30.8 31.4 33.5 1.95
42 3,4-Dihydroxybenzoic acid 34.4 33.8 32.8 −1.74
43 Chlorodibromoacetic acid 34.9 35.1 34.4 0.57
44 p-Toluic acid 29.1 29 30.3 −0.34
45 Glyoxalic acid 37.8 37.8 41.3 0
46 Tribromoacetic acid 34.9 34.2 33.7 −2.01
47 Glyceric acid 36.3 36.2 37.6 −0.28
48 2-Bromopropionic acid 33.4 33.7 36.2 0.9

Prediction set
49 3-Chloropropionic acid 36.8 37.6 38.1 2.17
50 2,3-Dibromopropionic acid 32.3 33.4 34 3.4
51 4-Iodobutyric acid 32.9 33.3 32.4 1.22
52 2-Chloro-3-hydroxybutyric acid 32.9 32.6 33.1 −0.91
53 p-Ethylbenzoic acid 26.5 27.2 27.9 2.64
54 2,4,6-Trimethylbenzoic acid 24.7 24 25.8 −2.83
55 2,4-Dihydroxybenzoic acid 32 33.7 33.2 5.31
56 p-Ethoxybenzoic acid 26.6 25.9 28.5 −2.63
57 5-Chlorovaleric acid 30.8 31.8 31.8 3.25
58 Phenylacetic acid 31.7 32.3 31.2 1.89
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Table 2
Specification of multiple linear regression models

Descriptor Notation Coefficient

Shape factor SF 1.1 (±0.4)
Maximum values of electron

density on atom in the
molecule

MED 18 (±8)

Molecular surface area MSA −0.024 (±0.018)
Sum of atomic polarizability SAP −1.4 (±0.2)
Constant −67 (±5)

[33–39]. In addition, we reported some relevant principles
of the ANNs in previous papers[40–47]. An ANN program
was written in FORTRAN 77 in our laboratory. This net-
work was feed-forward fully connected that has three layers
with sigmoidal transfer function. Descriptors appearing in
the MLR models were used as inputs of network and signal
of the output node represent the electrophoretic mobility
of interested compound. Thus, this network has four nodes
in input layer and one node in output layer. The value of
each input was divided into its mean value to bring them
into dynamic range of the sigmoid transfer function of the
network. The back-propagation algorithm was used for the
training of the network. The initial values of weights were
randomly selected from a uniform distribution that ranged
between−0.3 and+0.3. The initial values of biases were
set to be 1. These values were optimized during the network
training. Before training, the network parameters would
be optimized. These parameters are: number of nodes in
the hidden layer, weights and biases learning rates, and
the momentum. Procedures for the optimization of these
parameters were reported in our previous papers[42,45].
Then the optimized network was trained using training
set for the adjustment of weights and biases values. Also
cross-validation test was performed to evaluate the perfor-
mance and prediction power of the generated ANN model.

3. Results and discussion

Table 1shows the data set and corresponding observed
MLR and ANN predicted values of electrophoretic mobil-
ities of all molecules studied in this work. The selected
MLR models are presented inTable 2. It can be seen from
this table that four descriptors appeared in the MLR model.
These descriptors are: shape factor (SF), molecular surface
area (MSF), maximum value of electron density on atom
in the molecule (MED), and the sum of atomic polarizabil-
ity (SAP). The numerical values of these descriptors are
shown inTable 3. These variables encode different topolog-
ical, geometrical, and electronic aspect of molecular struc-
ture. As mentioned earlier, two fundamental frictional fac-
tors are found to be important in the electrophoretic mo-
bility of a solute in capillary electrophoresis. These factors
are the hydrodynamic friction factor, which is related to
the molecular size and/or mass of solute, and the dielectric

Table 3
The values of the descriptors that were used in this worka

Number SF SF MED SAP

1 1.5413 84.852 6.352 4.36
2 1.6214 127.62 6.357 8.85
3 2.5667 132.912 6.365 10.19
4 2.7496 159.426 6.364 11.55
5 2.3955 171.36 6.351 12.85
6 2.272 147.492 6.408 11.19
7 1.3563 129.456 6.351 8.40
8 1.4252 100.026 6.342 5.78
9 2.9170 187.074 6.337 12.50

10 2.7215 143.010 6.370 10.64
11 2.4073 173.520 6.367 12.85
12 1.6928 94.680 6.357 5.29
13 2.7316 139.176 6.317 10.12
14 1.2637 102.726 6.272 5.88
15 1.8795 180.054 6.341 12.20
16 1.0934 125.298 6.305 7.01
17 1.6514 87.822 6.367 4.88
18 2.9338 159.696 6.349 11.34
19 2.5468 130.158 6.315 9.43
20 1.9354 184.752 6.337 12.70
21 1.4207 186.426 6.348 12.98
22 1.4207 186.426 6.362 9.30
23 1.0856 127.566 6.300 7.07
24 1.2638 195.876 6.368 15.46
25 1.1628 39.168 6.283 4.24
26 3.3163 166.446 6.362 13.70
27 2.5829 165.42 6.371 12.40
28 1.2901 133.074 6.330 8.80
29 2.1175 205.704 6.340 13.74
30 2.7464 154.944 6.360 11.54
31 1.8317 104.022 6.355 7.09
32 2.5918 140.418 6.379 10.64
33 1.2306 110.772 6.369 6.64
34 1.1690 111.798 6.320 6.15
35 2.2611 167.040 6.370 13.70
36 2.8239 151.488 6.360 11.04
37 1.6825 160.020 6.358 11.06
38 1.0901 125.622 6.256 7.01
39 1.6194 215.100 6.367 17.22
40 1.9925 171.468 6.360 12.36
41 1.3922 140.742 6.341 9.30
42 2.7683 151.326 6.365 11.10
43 1.0461 135.720 6.310 7.99
44 2.2851 153.594 6.320 11.94
45 1.8910 80.802 6.269 4.13
46 1.0617 139.608 6.310 8.49
47 1.4314 119.736 6.370 7.10
48 1.2969 121.518 6.337 7.54
49 1.9709 114.984 6.354 7.04
50 1.5364 140.094 6.329 8.89
51 1.8809 149.922 6.357 10.60
52 1.5097 143.118 6.310 9.26
53 2.1558 178.596 6.366 13.70
54 2.2954 185.454 6.379 15.46
55 2.7802 149.814 6.384 11.10
56 2.8449 184.536 6.371 13.78
57 1.5715 157.914 6.357 10.56
58 2.4224 154.026 6.360 11.94

The numbers refers to the number of the molecules given inTable 1.
a The definitions of the descriptors are given inTable 2.



M.H. Fatemi / J. Chromatogr. A 1038 (2004) 231–237 235

friction factor, which is related to the charge distribution
within the solute[9–11]. In organic acid, the charge distri-
bution of carboxylate anion significantly influences the acid
dissociation constant. Hence, the pKa value is an effective
measure of the charge distribution within a fully deproto-
nated carboxylate ion, so each parameter that affected on
pKa value can influenced on the electrophoretic mobility of
solute. The maximum value of electron density on a atom
in molecule and the sum of atomic polarizability can influ-
enced on the pKa values of solutes and can be affected on
the dielectric friction term and plays important roles in the
migration behavior of carboxylate ions. The third parameter
that appeared in the MLR model is molecular surface area.
It is obvious that the hydrodynamic friction force in CE is
related to the size of molecule. As the MSA increase the
electrophoretic mobility decreases. This is due to the fric-
tional factor that may arise from shear across a small ele-
ment of liquid close to the migration solute, which depends
on the molecular surface area of solute. Another descrip-
tor appearing in the MLR model is shape factor. This pa-
rameter indicates the compactness and degree of branching
of the molecule. In the structural isomers as the branching
of molecule increase the value of this parameter decreases.
The inclusion of this parameter in the model considerably
improves the ability of the model to true prediction of the
electrophoretic mobility of structural isomers. Another rea-
son for appearing of this descriptor in the model is that the
steric effects influence the acid dissociation constants. Bulky
chain around the carboxyl group makes salvation of the car-
boxylate ion more difficult, resulting in an increase in the
pKa value and alter the electrophoretic mobility. These re-
sults are in agreement with Max Born’s model and Lucy
experiments[17,18].

The next step was to construct the artificial neural net-
work. Before training the network, the parameters of the
number of nodes in the hidden layer, weights and bi-
ases learning rates and momentum values were optimized.
Table 4 shows the architecture and specifications of the
optimized network. After optimization of the network pa-
rameters, the network was trained for the adjustment of
weights and biased values. To control the over fitting dur-
ing training after each 100 training iterations the network
was used to calculation of the electrophoretic mobilities of
molecules included in the test set. To maintain the predic-
tive power of the network at a desirable level, training was
stopped when the standard errors of prediction for the test

Table 4
Architecture and specification of the generated ANN

Number of nodes in the input layer 4
Number of nodes in the hidden layer 4
Number of nodes in the output layer 1
Weights learning rate 0.19
Biases learning rate 0.50
Momentum 0.50
Transfer function Sigmoid

Fig. 1. Plot of the ANN predicted electrophoretic mobilities against the
experimental values.

set started to increase. Obtained results showed that after
73 700 iterations, the values of standard error of prediction
started to increase and over fitting began. Based upon the
high values of iterations two points may arise. First, the
architecture of the generated ANN was correctly designed
and second, the descriptors appeared in the MLR model
have been adequately chosen.

In order to evaluate the credibility of the obtained ANN
model, the cross-validation method was used[48]. In this
method, 10 molecules were removed randomly from the
data set each time and the model was generated with the re-
maining molecules (leave-10-out procedure). Then the elec-
trophoretic mobilities of removed molecules were predicted
using the generated model. This procedure was continued
until each molecule was predicted once. As a result, six
rounds of run were needed (in one of these runs the val-
idation set has eight molecules). The obtained ANN pre-
dicted values of the electrophoretic mobilities of data set
are shown inTable 1and Fig. 1 and the statistical results
obtained are included inTable 5. As can be seen from this
table, the results do not depend on the molecules in training
and prediction set. In the case of ANN model, the maxi-
mum and minimum absolute relative errors for the predicted
electrophoretic mobilities are 5.31 and 0%, respectively.

Table 5
Comparison of the SEC and SEP of the selected model with the test
models obtained using different molecules

Model Predicted
molecule

S.E. R F

Test model I 1–10 0.8237 0.9856 271
Test model II 11–20 0.5930 0.9947 743
Test model III 21–30 0.5097 0.9906 998
Test model IV 31–40 0.5762 0.9947 753
Test model V 41–48 0.4788 0.9877 238
Test model VI 49–58 0.6354 0.9867 295
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Table 6
Statistical parameters obtained using the ANN and MLR modelsa

Model SEC SEP Rt Rp Ft Fp

ANN 0.6017 0.7201 0.992 0.987 3004 292
MLR 1.4799 0.9730 0.953 0.973 458 142

R is the correlation coefficient;F is the statisticalF value; SEC and SEP
are referring to standard error of calibration and prediction, respectively.

a t is referring to the training set; p is referring to the prediction set.

The average percent of deviation (APD) were calculated
for ANN and MLR predicted value of electrophoretic mo-
bility [49]. The APD for calibration and prediction set for
the ANN model are 1.56 and 2.63%, which should be com-
pared with the values of 3.59 and 3.64%, respectively, for
the MLR model. Comparison between these values and also
other statistical results of these two models inTable 6indi-
cates that obtained results using ANN are better than those
obtained using MLR model. This is believed to be due to
the non-linear capabilities of the ANN.

Fig. 1 shows the plot of the ANN predicted against the
experimental values of electrophoretic mobilities for the
molecules included in the data set. The correlation coeffi-
cient and standard error of this plot are 0.991 and 0.65, re-
spectively. Also, the propagation of points in both sides of
linear regression line indicates that no systematic error ex-
ists in the development of the ANN model.

Li et al. [50] reports a QSPR model for the prediction
of electrophoretic mobilities of aliphatic carboxylates and
amines. They use molecular mass, molecular volume, the
code (+1 or−1) for acid and base, and pK value as descrip-
tors in their model. In comparison with results obtained by
Li and coworkers they used an experimentally determined
parameter (pK) in their model, but in the present work only
theoretically derived descriptors were used. In QSPR studies,
it is preferred to use theoretical derived descriptors over ex-
perimental parameters. Because the determinations of these
parameters are usually expensive and time consuming, need
pure compounds and some instrumental facilities, and also
these values may have some experimental uncertainties. In
addition, the credibility and predictive power of the present
work evaluate carefully with cross-validation test.

4. Conclusion

The results of this study demonstrate that QSPR method
using the artificial neural network techniques can generate
suitable model for the prediction of electrophoretic mobil-
ities of carboxylic acids in capillary electrophoresis. The
key strength of the neural networks is their ability to allow
for flexible mapping of the selected features by manipulat-
ing their functional dependence implicitly, unlike regression
analysis. Neural network handles both linear and non-linear
relationships without adding complexity to model. This ca-
pability offset the larger computing time required and com-

plexity of the ANN method with respect to MLR. Descrip-
tors that appear in the MLR models and included in ANN,
provide information related to the different molecular prop-
erties that can participate in the physiochemical process that
occurs in capillary electrophoresis.
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